
Release 0.0    Copyright ã1993 by Don Yacktman.    All Rights Reserved.

DAYStopwatch

Inherits From: DAYTime
Declared In: daymisckit/DAYStopwatch.h

Class Description
The DAYStopwatch class is meant to be used to track the length of real time events.    All you have 
to do to use it, after creating an instance, is to send ±startTiming: and ±pauseTiming: messages 
when appropriate.    If you need to know the elaspsed time while the DAYStopwatch is running, then
send a ±calcElapsedTime: message first.    (In order to improve performance, elapsed time is 
updated only when you either pause the DAYStopWatch or when you explicitly ask it to update the 
time via the ±calcElapsedTime: message.)
Because the DAYStopwatch inherits from DAYTime, you can use all the DAYTime methods to query 
and manipulate the time tracked by the DAYStopwatch.    Also, by implication, the DAYStopwatch 
implements the NXTransport protocol, allowing it to be sent bycopy with Distributed Objects.    Also
note that it is possible to archive a running DAYStopWatch in a file, and it will continue measuring 
time.    You can use this, for example, to see how long it has been since an application was last 
launched.    The accuracy of the DAYStopWatch is only as good as the accuracy of the internal 
clock, however, since it is a wrapper around the standard UNIX gettimeofday() function.
If you wish to have the DAYStopwatch update it's time at regular intervals then you should use an 
Animator object to send it a ±calcElapsedTime: message periodically.    Future implementations 
may include a delegate object which is notified whenever the DAYStopwatch is updated, so that, 
for instance, a View subclass could display the changing time dynamically.



Instance Variables
BOOL paused;
struct timeval startTime;

paused Whether the DAYStopwatch is currently running or not.
startTime The time when the DAYStopwatch was started, if it is running.    

Whenever the DAYStopwatch is paused or asked to update the 
elapsed time, this time is used to increment the elasped time 
(available via DAYTime's methods) and is then set to the current 
system time in order to continue the timing process. 

Method Types

Initializing and freeing a DAYStopwatch ± init
Manipulating a DAYStopwatch ± calcElapsedTime:

± clearTiming:
± continueTiming:
± pauseTiming:
± startTiming:

Archiving ± read:
± write:

Instance Methods

calcElapsedTime:
- calcElapsedTime:sender

Recalculates the amount of time which has elapsed since the DAYStopwatch was started.    If a 
DAYStopwatch is running, you should call this method before querying the time, since elapsed time
is only updated when this method is invoked or when the DAYStopwatch is paused.    (This is for 



performance reasons.)    Returns self.
See also:    -pauseTiming:

clearTiming:
- clearTiming:sender

Clears the DAYStopwatch's elapsed time.    Returns self.
See also:    -continueTiming:, -pauseTiming:, and -startTiming:

continueTiming:
- continueTiming:sender

Starts the DAYStopwatch's clock without clearing it first.    Note that the time during which the 
DAYStopwatch was paused is not counted as part of the elapsed time.    Returns self.
See also:    -clearTiming:, -pauseTiming:, and -startTiming:

init
- init

Initializes and clear an instance of DAYStopwatch.    Returns self.

pauseTiming:
- pauseTiming:sender

Stops the DAYStopwatch's clock and updates the time.    Returns self.
See also:    -calcElapsedTime:, -clearTiming:, -continueTiming:, and -startTiming:

read:
- read:(NXTypedStream *)stream

Reads the DAYStopwatch from the typed stream stream.    Returns self.
See also:    - write:



startTiming:
- startTiming:sender

Clears the DAYStopwatch and starts it's clock.    Returns self.
See also:    -clearTiming:, -continueTiming:, and -pauseTiming:

write:
- write:(NXTypedStream *)stream

Writes the DAYStopwatch to the typed stream stream.    Returns self.
See also:    - read:


